» Latest Dyenamo news:
    "Dyenamo launches new product category for fullerene acceptors"

» Latest Dyenamo news:
    "Novel perovskite stability breakthrough molecule in Dyenamo's Perovskite Passivation Initiative"

Home > Blog

Dyenamo blog

Summarizing 2023 and an outlook

3 January 2024 / Henrik Pettersson

2023 has come to an end and I maintain the tradition of summarizing the past year from a Dyenamo perspective, well aware of the fact that a blog is outdated as communication platform.

In 2011, Dyenamo started manufacturing and selling materials components for chemistry-based solar energy conversion. The founders had decided to use Dyenamo as a platform to simplify life for researchers and companies working on upcoming photovoltaic technologies. 12 years later, I am proud to conclude that we have helped several hundreds of customers all over the world and combined this with a sustainable business. It is still rewarding to witness our chemicals appearing in solar cell products, pilot lines, world record solar cell efficiencies and academic publications.

During 2023, the Dyenamo team once again proved its capacity to efficiently tackle growth challenges. It is a hard test of an organisation to respond to dramatically increased demand, and I am very proud of how we managed to meet the challenges. As an example, I want to highlight that we have succesfully scaled up the production of our high-quality perovskite salts and low-temperature carbon paste. In parallell, we have launched >50 new products, mainly via the "Dyenamo SAM Factory" and our "Perovskite Passivation Initiative". The four ongoing EU co-funded perovskite solar cell projects Pepperoni, Diamond, Triumph and Sunrey allow us to collaborate with most of the leading European universities, institutes and companies in the field. In addition, we are active in two Swedish perovskite projects; one on lead encapsulation with Uppsala University (VINNOVA co-funded) and one for re-cycling lead-acid battery materials to lead iodide (co-funded by the Swedish Energy Agency).

Finally, I would like to express my gratitude to all our customers, distributors and project partners. I am looking forward to meeting and/or hearing from you during 2024. The new year has hardly started and new Dyenamo oppurtunities are already lining up, i.e. the best is yet to come!

Summarizing 2022 and an outlook

19 January 2023 / Henrik Pettersson

2022 has come to an end and I maintain the tradition of summarizing the past year from a Dyenamo perspective.

It has been an intense year, which for Dyenamo can be summarized in one word: more - more products, more of the products, more employees, more projects etc.

I am proud to conclude that our materials keep appearing in world record efficiency publications, e.g. the 31.2 % and 32.5 % tandem Si-perovskite efficiency from CSEM/EPFL and Helmholtz Zentrum Berlin, respectively, and the 15.2 % DSSC efficiency from EPFL. Our low-temperature carbon paste DN-CP01 continuous to frequently open up novel development routes and upscaling possibilities for perovskite solar cells. One example from 2022 is the 18.5 % efficiency obtained by Fraunhofer ISE. In parallel to this, the supply to companies is ongoing. It is very rewarding to witness our materials being used in products, pilot-lines, academic labs and publications. I conclude that Dyenamo continuous to make a difference for our customers, which was the main objective for founding Dyenamo in 2011. We continue to remain true to our cornerstones and our business model based on sustainable growth.

We enter 2023 with four recently granted Horizon Europe projects co-funded by the European Commission. These four projects entitled Diamond, Pepperoni, Sunrey and Triumph (see our News section), give us outstanding possibilities to continue on our path. Collectively, the projects cover all aspects of the technology from fundamentals to optimization, from novel materials to upscaling, from cell optimization to pilot lines, from single junction to triple-junction devices via tandem devices. The projects allow Dyenamo to stay active at the research frontier through collaboration with the leading European perovskite organizations.

Last but not least, I want to express my gratitude to all our customers, distributors, project partners and colleagues. I am looking forward to meeting you and hearing from you during 2023.

Dyenamo celebrates 10 years on the market

15 November 2021 / Henrik Pettersson

Dyenamo was created from Swedish research and development on dye-sensitized solar cells within the Centre for Molecular Devices, a collaboration between Uppsala University, KTH in Stockholm and the research institute Swerea IVF. The Dyenamo co-founders (Gerrit Boschloo, Anders Hagfeldt, Lars Kloo, Licheng Sun and myself) had identified a need for a highly specialized chemical company providing state-of-the-art materials for research and industrialisation. Our vision was thus to create a company that would help others achieving their objectives. In September 2011, the company received its first order. 10 years later, we have shipped chemicals to six continents and >40 countries. I am proud to conclude that we have made a difference for laboratories and companies, and that Dyenamo has made an impact on chemistry-based solar cells. All of this has been made without abandoning our original idea of sustainable growth. In addition, we have stayed true to our original cornerstones for the company; i) to provide the latest findings in chemistry-based solar energy conversion to academia and industry, ii) to follow our customers to increased volumes, iii) to specialize in efficiently scaling up materials in various categories, and iv) to cater to on demand material requests.

Looking back at the first 10 years, there are many memorable moments; the two DSSC conferences in Uppsala, the EU Espresso project, the visiting delegations from Indonesia and Afghanistan, online thematic workshops, the visit from representatives from the Swedish government, Asian tours, the success of our carbon paste, realization of high-purity perovskite precursors and numerous additional successful synthesis and upscaling challenges. All of this has happened in a very dynamic field. 10 years ago, we believed that the dye-sensitized solar cell technology was about to take off commercially for BIPV applications. Since then, the focus has turned to low-power applications. In parallel, the perovskite solar technology has been invented and the activities have exploded. Today, there are numerous ongoing commercializing efforts on perovskite devices for various applications. It is obviously very challenging to supply chemicals to an uncertain future market. Over these 10 years, we have seen the birth and closure of many promising start-ups focusing on solar cell production. It has been fascinating to see their similarities and differences. There are signs indicating that the present company generation will be the successful one, the future will tell.

I have always enjoyed discussing with scientists. Even though I seldom understand the details of their work, their passion and motivation always give me hope for a better future. However, from my side, the most rewarding Dyenamo experiences have been all the discussions and planning with my Dyenamo co-founders and team, and to witness the development of our employees. Their curiosity, positive attitude and energy is what pushes Dyenamo forwards.

I am looking forwards to the next 10 years.

Dyenamo-materials and solar cell efficiency world-records for dye-sensitized, perovskite and organic solar cells

22 June 2021 / Henrik Pettersson

In December 2015, we wrote a Dyenamo blogpost regarding solar cell efficiency world-records. We discussed similarities between solar cell research and team-based sports, sharing the same passion for world-records. Solar cell efficiency world-records attract attention, career possibilities and opens for funding, whereas sport-records attract fame and sponsor deals. Moreover, we concluded that, from an industrialization point of view, solar world-records have a minor impact. However, for showing the potential of technologies, reaching out to the public and obtain interest from society, they are very important. The background to the blogpost was that Dyenamo materials were used to obtain the world-record for perovskite and dye-sensitized solar cells. We concluded that it had never been Dyenamo's ambition to provide world-record materials. From the start in 2011, the aim of Dyenamo has been to simplify life for researchers and companies active in the field of chemistry-based solar cells. Nevertheless, it was very rewarding to conclude that our materials were used in the record-devices for both technologies. Since then, it has occurred at several occasions that our materials have been used in new record-publications. Almost six years after the earlier mentioned blogpost l, I want to follow-up on the topic by mentioning the following five recent papers and their respective efficiency records (and some key materials used in the respective work):

1. Dye-sensitized solar cells: 13.5 % under standard AM1.5G 1000 W/m2 illumination, and 34.5 % at 1000 lux from fluorescent illumination D. Zhang et al., DOI: 10.1038/s41467-021-21945-3) (DN-Cu09, DN-Cu10, DN-F16B, DN-F22)
2. Perovskite solar cells: 25.2 % efficiency by Jaeki Yeong et al., DOI: 10.1038/s41586-021-03406-5 (DN-P24, DN-P10)
3. Perovskite cells using carbon as back contact: 20.3 % efficiency by K. Ramachandran et al., DOI: 10.1016/j.jallcom.2021.160530 (DN-CP01)
4. Tandem Si/perovskite devices: 29.15 % efficiency by Amran Al-Ashouri et al., DOI: 10,1126/science.aba3433(DN-P09, DN-P10, DN-X10)
5. Organic solar cells: 18.4 % efficiency by Yuanbao Lin et al., DOI: 10.1002/cssc.202100707 (DN-X12)

It is remarkable to conclude that Dyenamo-materials are used in so many technologies and technology branches of chemistry-based solar cells. Even though such broad product portfolio was the vision from the start, it is almost overwhelming to witness it happening. Hard work and a sustainable business idea based on the concept of organic growth have been key parameters. I consider myself to be a person with both feet on the ground. This list, however, makes me so proud I start to feel one foot slightly lifting from the ground.

Summarizing 2020 and looking forward

15 January 2021 / Henrik Pettersson

2020 has come to an end and I maintain the tradition of summarizing the past year from a Dyenamo perspective. It has been a very challenging year where the everyday routines were turned upside down. Like all companies, we have struggled to keep our activities efficiently running and to adapt to the new situation. An example of the latter is that we early in the lockdown discovered that scientists around the world wanted to talk about other things than Covid-19. We then had a spontaneous idea to try out online thematic workshops. The first one (theme Perovskite solar cells using Dyenamo's low-temperature carbon paste) that was held on the 8th of April was very well received by the participants. This motivated us to carry out a series of workshops and shortly thereafter, we had organized five such events with appr. 450 participants from > 35 countries. Experts presented to, and discussed with, other experts on very specific themes. Today, online conferences and workshops are part of our new routines and we jump in and out of meetings at an impressive speed. However, I am very proud to conclude that Dyenamo performed our workshops at such an early stage that they will be remembered by the participants. Summaries of the workshops can be found in our News section. A more elaborated version of my own thoughts with regards to online workshops can be found in an earlier blog-post.

In 2011, Dyenamo started selling material-components for dye-sensitized solar cells and solar fuels. Already from the start, we had the vision of a company that simplified life for researchers and companies working on chemistry-based solar energy conversions. This was confirmed by the definition of a set of cornerstones for the company; i) to provide the latest findings in chemistry-based solar energy conversion to academia and industry, ii) to follow our customers to increased volumes, iii) to specialize in efficiently scaling-up materials in various categories, and iv) to cater to on demand material requests. When the perovskite technology entered, we quickly started to provide the key components (I looked it up and it was already on the 23 October 2013) according to our philosophy. Looking back, I conclude that, throughout these nine years, we have stayed true to our cornerstones and our model based on sustainable growth. During 2020, we have launched 10 new material-products, most of them for perovskite solar cells. In parallel, we continue to deliver market-leading purity grades (>99.999 %) of perovskite precursor salts, a massive selection of hole conductors and our low-temperature carbon paste for perovskite solar cells. Likewise, we continue to provide state-of-the-art dyes and redox mediators for dye-sensitized solar cells. It is very rewarding to see our materials being used in products, pilot-lines, academic labs and publications. We can thus conclude that Dyenamo makes a difference for our customers.

During 2020, we intensified our activities on hole conductors and dopants. The selection now includes 17 materials. I want to highlight the license agreement with Helmholtz-Zentrum Berlin and Kaunas University of Technology for commercialisation of their self-assembly monolayer hole conductor materials. Such collaborations with leading academic groups are strategically important for Dyenamo in order to stay at the research frontier. Our two ongoing European R&D perovskite consortia, Espresso and UNIQUE, are thus very important and valuable for us. The prerequisites for performing international R&D without travelling has obviously been very challenging. Nevertheless, I am impressed by the energy and driving force of all partners involved.

Apart from material, Dyenamo has been increasingly involved in manufacturing and selling solar cell test equipment and distributing laboratory manufacturing equipment. Collectively, this paved the way for our laboratory manufacturing kits for perovskite solar cells and low-power dye-sensitized solar cells. These have enabled various laboratories around the world to quickly and efficiently enter the field.

I want to congratulate our co-founder and advisor Anders Hagfeldt for becoming President of Uppsala University. This is a great loss for dye-sensitized and perovskite solar cell research but a great triumph for Sweden and Uppsala University. In this context, I also want to congratulate our co-founder Licheng Sun who has been appointed Director at the Centre of Artificial Photosynthesis for Solar Fuels at Westlake University in Hangzhou, China.

I am very proud to conclude that the Dyenamo team has managed to keep our activities running throughout this year. Our production, R&D and administration have experienced some of the most challenging situations in the company history but we have solved them by working together. Ironically enough, the pandemic turned out to be a great team-building exercise.

Last but not least, I want to express my gratitude to all our customers, distributors, project partners and colleagues. I am looking forward to hearing from you during 2021, and to perhaps re-starting to meeting you in person.

Experiences from organizing five thematic online workshops

16 June 2020 / Henrik Pettersson

"Difficult times lead to unconventional ideas. We are all used to meet at conferences and meetings, suddenly it is not even obvious to meet your own colleagues." These have been my opening words to the five thematic online workshops that Dyenamo has organized during the past three months. What started out as a spontaneous idea has grown into an interesting concept for state-of-the-art information exchange and discussions. Collectively, appr. 450 participants from > 35 countries have joined the workshops. Experts have presented to, and discussed with, other experts. Some participants have been very loyal and participated every time whereas others have joined one or two events.

The themes and the origin of the workshops have been different. The background to the topic of the first one ("Perovskite solar cells using the Dyenamo carbon paste DN-CP01") was that several customers reported great results with our carbon paste but they were not aware of each other. We then used the workshop as a platform to help them exchange information. The second and the third workshop ("Dye-sensitized solar cells using Cu-based redox mediators" and "Dye-sensitized solar fuels") were spinoff effects from our two previous Uppsala conferences on dye-sensitized solar cells. The fourth one ("Hole conductors for perovskite solar cells") was an idea from our hole conductor expert Bo Xu. The fifth one differed from the others as it was a status report from the EU-funded project Espresso (Efficient structures and processes for reliable perovskite solar modules). The workshop gave the project the possibility to reach out and present our results to date.

Summaries of the workshops can be found in our News section. I would here like to focus on a few non-technical observations:

- Online workshops open for participants from countries with limited means to travel to meet with leading experts, i.e. the online workshop is a very democratic forum.
- Online workshops do not require any preparation time, such as travelling, i.e. it is a time-saving concept.
- Online workshops can more easily have narrow themes as they do not need many participants, i.e. it can be a very specific meeting-place.

In addition, online meetings address the obvious "elephant in the room" at every PV conference where solar cell scientist aiming to make a better world travel around the same. Personally, I believe that online workshops have a role to play also from the perspective of reducing greenhouse gases. They can never replace personal meetings, but it is an excellent complementary platform, and a reminder to all of us to ask ourselves how many of our scheduled travels that are really necessary.

Summarizing 2019 and looking forward

9 January 2020 / Henrik Pettersson

2019 has come to an end and I maintain the tradition of summarizing the past year from a Dyenamo perspective, starting by thanking all our customers, distributors, project partners and colleagues.

Since the start in 2011, Dyenamo has remained true to our model based on sustainable growth by offering the latest findings in chemistry-based solar energy conversion and following our customers to increased volumes. The first few years, this consisted of material-components for dye-sensitized solar cells. However, we maintained our philosophy when entering the field of perovskite solar cells. Over the years, this has also taken us to becoming a manufacturer of test equipment, distributor of laboratory manufacturing equipment, provider of training and coaching courses and conference organizer.

During 2019, we have launched 20 new material-products, 16 of these are for perovskite solar cells. I especially highlight the market-leading purity grades (>99.999 %) of the perovskite precursor salts (MAI, FAI, MABr, FABr and MACl). Various partners in e.g. the EU-funded project ESPRESSO, have confirmed improved device reproducibility, performance and stability using the high-purity materials. These, in combination with the carbon paste DN-CP01, have placed us in the same position as for dye-sensitized solar cells, i.e. as the company opening new possibilities for researchers and companies.

Our equipment portfolio now ranges from solar cell test equipment to various pieces of laboratory manufacturing equipment. It is very rewarding to conclude that our products are used to simplify, streamline and open new possibilities in the daily work for many laboratories around the world. I highlight our collaboration with our partner Elixir Technologies, that allows us to efficiently develop and launch new pieces of manufacturing equipment.

For the second time, we organized a DSSC conference in Uppsala. I did not expect that the same vibrant conference atmosphere as in 2017 (the DSSC strikes back conference) could be created a second time. I was very pleased to have been proven wrong. The 106 participants from 20 countries created a fantastic collaborative environment, and made a firm statement that DSSC has entered a new intensified phase, in terms of industrialization as well as research. I am also very proud of the way the Dyenamo team, once more, managed to host the event in a very professional manner.

A few months back, the project "UNIQUE" (Carbon Based Perovskite Solar Cells with Uni-Directional Electron Bulk Transport: in the quest of a Short Time to Market) has started. It is the first European consortium dedicated to carbon-based perovskite solar devices with the ambitious target to develop a competitive new-generation photovoltaic technology, characterized by small investment cost and unique possibilities for local production. The three-year project gathers nine partners from seven European countries, with Dyenamo as the industrial chemistry-partner.

Finally, I want to take the opportunity to welcome Dr. Bo Xu, the inventor of many of our hole conductors, such as X60, X55 and X59, to the Dyenamo team. Apart from strengthening our activities on hole conductors, his 9 years of experience in dye-sensitized and perovskite solar cells (primarily at KTH in Stockholm) enable us to give stronger support in device manufacturing.

Once again, many thanks for a great year. I am looking forward to hearing from you during 2020.

Impressions from the second Dyenamo DSSC conference, Uppsala October 2019

29 October 2019 / Henrik Pettersson

Two years ago, Dyenamo organized the conference "DSSC Strikes Back" in Uppsala, Sweden. It was triggered by the fact that we sensed an upcoming trend for dye-sensitized solar cells (DSSC), driven by exploiting unique features of the technology, mainly aesthetic properties and great functionality at low-light conditions. In addition, new chemistry opened a path to increased efficiencies. The conference massively confirmed our trend-predictions.

When we now two years later organized the second Dyenamo DSSC conference, we had great expectations that the trends from the last meeting had been realized. We were not disappointed. The 106 participants from 20 countries made a clear statement that DSSC has entered a new intensified phase, in terms of industrialization as well as research.

The event was kicked off by a Training & Coaching day at the Ångström laboratories in Uppsala where 11 participants met to learn from and discuss with the Dyenamo founders. Already during this day, we felt the strength of a new generation of strongly motivated and curious DSSC researchers.

The oral presentations of the two-day conference started with Michael Grätzel, EPFL, followed by Giovanni Fili and Henrik Lindström from Exeger. Already before the first coffee break, these presentations had collectively confirmed that DSSC has entered a new phase. After a waiting period, the world-record efficiency values are broken again and the dream target of 15 % is within reach. Moreover, the technology commercialisation is rapidly advancing, confirmed by the involvement of high-tech investors (e.g. Softbank) and end-users (e.g. JBL). This message that DSSC has entered a new phase grew stronger as the presentations proceeded.

From an application point of view, it was striking that DSSC is now targeting niche applications. Apart from the commercialization of products such as various sensors, electronic curtains, solar-tables and headphones, we saw ongoing development of panels for greenhouses and BIPV. In addition, new DSSC device concepts targeting new applications were introduced e.g. by the companies Songitextile and Exeger (new device concepts for flexible devices), Frederic Sauvage, CNRS (fully transparent devices) and Tae-Hyuk Kim, UNIST (combined integrated solar cells/battery for IoT applications). We also learned new terminology, such as i) PIPV -Product Integrated PhotoVoltaics, ii) DSSB - dye-sensitized solar battery, iii) energy recycling - using ambient artificial light to produce electricity.

From an efficiency perspective, the dream-target of 15 % is within reach. The background to this is that the activities on one-electron redox couples such as Co- and Cu-complexes are now paying off. One speaker after the other presented various record-efficiency values for different device types, e.g. opaque cells, see-through cells, monolithic cells, so-called "zombie" cells, solid-state cells and low-power devices.

From a process-point of view, Adélio Mendes,Porto Uiversity, presented a fully glass-sealed device, including glass-sealing of the filling holes, performed at room temperature using laser. He also introduced a conducting glass substrate with chemically inert Cr current-collectors, opening for larger cells without interconnections. Dong Yoon Lee, Electrotechnology Research Institute, presented the high-throughput DSSC manufacturing line used by SongiTextile for flexible DSSC.

From a geographical perspective, the DSSC activities in South Korea came out strong from the talks from JaeJoon Lee, Tae-Hyuk Kwon, Dong Yoon Lee and Hwan-Kyu Kim. Japan's strong DSSC tradition was illustrated by the presentations of Satoshi Uchida, Shogo Mori, Masahide Kawaraya, and Kenichi Okada, Fujikura. Likewise, the traditionally strong DSSC countries Switzerland and Sweden demonstrated that the DSSC activities remain strong (e.g. Michael Grätzel, Marina Freitag and Exeger). In addition, we had speakers from e.g. China (Yingling Wang), Taiwan (Everlight Chemicals), Italy (Claudia Barolo and Federico Bella), Greece (Elias Stathatos), United Kingdom (Elisabeth Gibson, Peter Holliman), Portugal (Adélio Mendes), Poland (Marcin Ziólek).

Collectively, the industrial and academic speakers, poster presenters and participants once again confirmed a vibrant and collaborative community. It is very rewarding to see the friendly collaborative interaction between researchers and business people of different ages and cultures. From an organizational point of view, we are very proud of how professionally the Dyenamo team managed to host the event, despite the fact that this was merely our second conference arrangement. Positive and engaged participants made it very easy to organize things. Thank you to everyone involved!

The question we received throughout the event was if we would arrange a third DSSC conference. The answer is yes, we are aiming for a hattrick and we are looking forward to it!

Upon Dyenamo's high-purity perovskite precursor salts

5 September 2019 / Henrik Pettersson

Researchers and companies that develop chemistry-based solar cells such as perovskite cells are always looking for the "best chemicals". The definition often becomes the material that gives the highest device efficiency. Interestingly enough, laboratories often end up with different winning material compositions. The source of this may be caused by manufacturing methods or laboratory environment, but material impurities may also play a role. It is interesting to note that many laboratories use a specific perovskite precursor material without knowing the reasons for the high device performance. When a new batch does not deliver the same device performance as the last one, there is often no follow-up on what caused the difference, apart from contacting the material supplier...

Dyenamo's philosophy is that material purity is the way to control the perovskite solar cells. Pure materials have turned out to be crucial for device reproducibility and often beneficial for device performance. In addition, a highly pure perovskite precursor material opens for realizing the optimum composition for a given end-user via deliberate introduction of additives. As a consequence of this, Dyenamo has introduced three grades of MAI, FAI, MABr, FaBr and MaCl, specified as >99 %, >99.99 % (grade 4N) and >99.999 % (grade 5N), respectively. In addition, all products can be manufactured upon specification. As an example of this, we have introduced a special grade of MAI (DN-P02P), with an increased amount of phosphite, as this has turned out to be beneficial for the device performance in certain laboratories.

By using the materials specified as >99 % purity, small batch to batch variations caused by trace impurities may occur. The risk for such trace impurities affecting the solar cell performance and/or device reproducibility is strongly reduced by using grade 4N and removed by using 5N. Consequently, by using the 5N material, a laboratory can be confident that the same material is obtained in every delivery. In order to secure that all the products can be stored outside dry environment, we have added an additional hermetically sealed water-barrier to the products.

Summarizing 2018 and looking forward

16 January 2019 / Henrik Pettersson

Another year has come to an end and I maintain the tradition of summarizing the past year from a Dyenamo perspective, starting by thanking all our customers, project partners and colleagues. I also want to address my gratitude to our distributors around the world. Dyenamo is still a small company and to efficiently reach out on a global market without all of you would not be possible.

Since the start in 2011, Dyenamo's ambition has been to offer the latest findings in chemistry-based solar energy conversion. Originally, this was material-components for dye-sensitized solar cells. This approach has been maintained for the rapid development in the field of perovskite solar cells. During 2018, our internal development activities for perovskite solar cells have focused on highest purity of the perovskite-salts on kg-batch levels. The results are very satisfactory, and we enter 2019 with great self-confidence and expectations for the perovskite-business. I also want to highlight the carbon paste DN-CP01 (see previous blogpost from 2018) that has opened new prerequisites for perovskite research and development.

I also want to highlight the fact that we receive an increasing number of requests for materials on demand, not limited to solar cell applications. Repeatedly, we have managed to deliver complicated materials towards a given specification, confirming the capability of the Dyenamo synthetical team.

The H2020 project ESPResSo, which started in April 2018 is Dyenamo's first participation in an EU-funded project. After eight months, I can already conclude that it is a very valuable and rewarding experience to collaborate with leading European research groups and companies to develop improved perovskite solar cells.

Apart from materials, the activities on characterization equipment has been intense. The potentiostat DN-AE05 is a cost-efficient and highly accurate IV-measurement solution designed for small solar cells (<1 cm2) and low-power (indoor ambient light) applications. As the product is based upon a computer-controlled potentiostat, it can also be used for various low-current (<15 mA) electrochemical applications. In combination with the power meter DN-AE06, we now offer a kit for IV-measurements at various light-conditions, ranging from low-power indoor to solar outdoor measurements. I am also pleased to conclude that our dye-sensitized solar cell toolbox (DN-AE01) and our photo-induced absorption spectroscopy (PIA) setup (DN-AE02) are becoming standard tools in the field. Moreover, our IPCE equipment (DN-AE03) has been upgraded for more efficient use for perovskite and other PV technologies.

With regards to laboratory manufacturing equipment, we offer a broad set of products, such as equipment for device encapsulation, screen printing, electrode sintering, spin-coating, glass-cutting, hole-drilling and spray pyrolysis. I especially want to highlight the glass cutter (made by our partner Elixir Technologies) that has simplified the daily work for many PV laboratories.

Once again, many thanks for a great year. I am looking forward to hearing from you during 2019.

Why Dyenamo's carbon paste DN-CP01 can influence the entire perovskite field

24 April 2018 / Henrik Pettersson

Academic activities on perovskite solar cells are so far mainly performance-driven. However, this is about to change as it is becoming more and more demanding to further increase cell-efficiency record-values. Moreover, the record cell-efficiencies are already so high that it has been proven that the technology must be treated seriously also from an industrialization point of view, especially when taking the low-cost features into consideration. Many research groups are thus broadening and re-focusing their perovskite activities towards accelerated testing, understanding of degradation mechanisms, and investigation of novel device concepts. Other applications than solar cells such as LEDs and x-ray detections are also intensively explored.

The industrial module-developers obviously have another approach where they need to define the specifications of their targeted market, and realize competitive device performance combined with long product life using reliable, cost-efficient scalable process methods and materials. One branch of the existing perovskite module-industry is heading towards tandem devices where the perovskite device is placed on top of e.g. a silicon device. The second branch is heading towards independent perovskite modules. In both cases, a central piece of the puzzle is to use a suitable cell concept. Several ongoing module-industrialization efforts for the above-mentioned second branch are going in the direction where a carbon electrode is used as the hole-accepting electrode in a monolithic geometry, i.e. a triple-structure consisting of TiO2, spacer and carbon. These layers are collectively sintered whereupon the perovskite solution is introduced into the porous structure. After crystallization, i.e. formation of the perovskite structure in the pores, the device is ready. Since serial-connections can be integrated in the structure, the transfer from cell to module is straightforward. This concept takes away the need for a hole conductor and a metal back-contact opening for a cost-efficient device. It is a beautiful solution where the drawbacks to date are performance, the need for a spacer layer and a limitation to glass-substrates due to the required sintering temperature. This analysis directed us to develop a low-temperature curing carbon paste that could be applied directly to a perovskite layer, i.e. the paste is applied after crystallization without an intermediate spacer or hole conductor. As this now has been realized with the carbon paste DN-CP01, I want to highlight the following consequences:

1. Cell efficiencies above 15 % have already been reached by our partner KTH in Stockholm (publication in progress) verifying the functionality of the paste in perovskite solar cells
2. The paste opens for a planar cell structure (i.e. no TiO2) consisting merely of a perovskite layer and carbon on a conducting substrate. Crystallization in a planar structure is more controllable than in a porous structure.
3. Serial-connections can be made with the carbon layer enabling an efficient transfer from cell to module. Alternatively, current collectors can be applied on top of the carbon layer opening for larges cells.
4. Flexible substrates can be used as the curing temperature is low and the carbon layer can be bent.

With the paste DN-CP01, Dyenamo provides a key prerequisite for both academia and industry to investigate, develop and commercialize one of the simplest imaginable solar cells, on rigid or flexible substrates.

To find out more about our carbon paste DN-CP01, or send a quotation request, click here.

ESPResSo, an ambitious EU funded collaboration to make Perovskite solar cells a market reality

19 April 2018 / Henrik Pettersson

The first of April was the start of the three-year project ESPResSo (Efficient Structures and Processes for Reliable Perovskite Solar Modules). I am very proud that Dyenamo is a part of this world-leading perovskite solar cell consortium, which has been granted over five million Euro by the European Union. Apart from Dyenamo, the members of the consortium are coordinator IMEC (Belgium), EPFL (Switzerland), University of Rome, CNR and CSGI (Italy), Fraunhofer (Germany), University of Cyprus, Dycotec and M-Solv (UK), Onyx (Spain), Corning (France) and Saule (Poland).

The ESPResSo team covers the full spectrum from fundamental studies to industrialization via e.g. studies of sustainability issues and development of materials, process technology and prototypes. Dyenamo's tasks are naturally material-oriented.

The ESPResSo project is the first one for Dyenamo in Horizon 2020. It places us exactly where we aim to be, i.e. in the centre of the world-leading perovskite solar cell activities!

Summarizing 2017 and looking forward

8 January 2018 / Henrik Pettersson

Another year has come to an end and it is time to thank all our customers and colleagues for an intense, challenging, successful and rewarding 2017.

Dyenamo started out as a company providing state-of-the-art material-components for chemistry-based solar energy technologies. Over the years, we have slowly but steadily increased our activities and today, manufacturing and characterization equipment, training and consulting services are as natural parts of our business as the material-components. This has all been realized without abandoning our model based on sustainable growth.

My personal Dyenamo 2017 highlight was the "DSSC strikes back" conference in Uppsala. We took a big step outside our comfort zone and managed to, all on our own, organize a very successful event. I am also pleased to see that our patent portfolio for the next generation DSSC materials/concepts (one-electron redox mediators such as copper and cobalt, and so-called zombie devices and their key components) are developing according to plan. Together with our increased material-component production capacity, we have a strong package. Our pieces of characterization equipment (e.g. toolbox, PEC-holder, PIA) have been implemented as standard tools in several laboratories. Additional equipment will be launched in 2018, keep your eyes open!

Our collaboration with Elixir Technologies in Bangalore was taken to the next level as we were appointed exclusive distributor for their manufacturing equipment for dye-sensitized and perovskite solar cells outside India. Consequently, we now offer a broad set of products, such as equipment for device encapsulation, screen printing, electrode sintering, spin coating, glass cutting, hole drilling and spray pyrolysis.

I am proud of the fact that Dyenamo is part of the ESPRESSO consortium, which has been granted a three-year EU-funded Horizon 2020 project on perovskite solar cells. In collaboration with coordinating IMEC (Belgium), EPFL (Switzerland), University of Rome, CNR and CSGI (Italy), Fraunhofer (Germany), University of Cyprus, Dycotec and M-Solv (UK), Onyx (Spain), Corning (France) and Saule (Poland), we collectively take on the challenge of bringing the technology to the next maturity phase.

Once again, many thanks for a great year. I am looking forward to hearing from you during 2018.

Impressions from the Dyenamo Conference DSSC Strikes Back, Uppsala October 2017

23 October 2017 / Henrik Pettersson

The Dyenamo DSSC conference "DSSC Strikes Back" was triggered by the fact that we sensed an upcoming trend for dye-sensitized solar cells (DSSC), driven by exploiting unique features of the DSSC technology, mainly esthetic properties and great functionality at low-light conditions, i.e. IoT-conditions. In addition, DSSC researchers and companies had no active forum to meet, exchange ideas and discuss.

The event was kicked off by a Training & Coaching day where 16 participants met to learn from and discuss with the Dyenamo founders and staff. This was followed by a welcome reception where approximately 60 people showed up. Already during this day, we felt a strong curiosity regarding the present status of the DSSC field in combination with a very positive attitude and good mood.

The oral presentations of the following two-day conference, with 115 participants from 18 countries, started with Michael Grätzel. He directly showed that this was no walk down DSSC memory lane but an opening of a new intensified DSSC era, with novel materials and concepts. He was followed by industrial talks from H.glass in Switzerland and Dongjin Semichem in South Korea. They both demonstrated that there are strong industrial DSSC activities and many exiting DSSC BIPV installations. This, and the ongoing DSSC industrialization for low-power applications, were confirmed by several industrial speakers from Exeger (Sweden), Aisin Seiki/Toyota (Japan), Everlight (Taiwan), 3GSolar (Israel) and Songtextile (Japan). Most of these companies also displayed DSSC products/protoypes in the DSSC module showroom. In addition, the impressive DSSC-covered building in Shanghai presented by Prof. Hujiang Shen from Shanghai Institute of Ceramics, Chinese Academy of Sciences took most people by great surprise. With regards to surprise, the presentation and technology demonstration from Ingmar Brüder of trinamiX, a subsidiary of BASF, lifted many eyebrows. A unique feature, focus-induced photoresponse, first discovered in DSSC devices, makes it possible to e.g. measure distances in a completely new way. It was a pleasure to take part of Ingmar's fascinating story and his charismatic personality.

From an academic perspective, the conference gave an excellent summary of the state-of-the-art in terms of materials and devices. With the introduction of new redox couples such as Co- and Cu-complexes there is now a clear direction how to improve the record efficiencies. The low driving force for dye regeneration allows open circuit photovoltages above 1.1 V as described by Michael Grätzel and Marina Freitag. Development of new organic and porphyrine dyes, as presented by for example Elena Galoppini and Hwan Kyu Kim, in combination with the new redox systems indicate the possibilities to beat the present certified record efficiency. High efficiencies need to be obtained together with excellent stability and Frédéric Sauvage gave a very interesting talk on fundamental studies of degradation mechanisms. Several talks also drew attention to the importance of the different interfaces in the devices. For example, Sabina Scarabino and Jacqueline Cole discussed the development of SECM and in situ neutron reflectivity to investigate the interfacial properties. Water-based electrolytes, dyes with different colors, p-type DSSCs, etc, were other topics, which show the beautiful chemistry and the versatile materials platform of DSSC.

Collectively, the industrial and academic speakers, poster presenters and participants demonstrated a vibrant community and clearly proved that DSSC is strong both scientifically and from an industrial viewpoint. From an organizational point of view, we are very proud of how the Dyenamo team managed to host the event, despite the fact that this was out of our comfort zone. Positive and engaged participants made it very easy to organize things. Thank you to everyone involved!

We are already looking forward to our next DSSC conference, scheduled for 2018.

Simple additive in cobalt electrolyte improves the efficiency of dye-sensitized solar cells by 2% units

06 March 2017 / Gerrit Boschloo

Hybrid electrolytes, which contain more than one redox couple, have been investigated in dye-sensitized solar cells for a long time. For instance, Bignozzi and co-workers combined ferrocene and phenothiazine, which show fast electron transfer processes, with cobalt(II/III) trisbipyridine, which has rather slow kinetics ( J. Am. Chem. Soc. 2006, 128, 9996-9997). Their results were not impressive, but they made a good point: the kinetics of cobalt mediators are rather slow. Later, Kloo and co-workers added TEMPO to cobalt electrolyte, which led to a nice improvement in efficiency, from 7.1% without to 8.4% with TEMPO additive (Cong et al., ChemSusChem 2015, 8, 264 - 268). The stability of this system was rather poor.

In recent research led in my group we found that the addition of tris(p-anisyl)amine (TPAA) to a standard cobalt-based electrolyte led to a marked improvement of performance of the dye-sensitized solar cell from 8.4% to 10.5% in a co-sensitized system (Hao et al., Nature Commun. 7 (2016) 13934 | DOI: 10.1038/ncomms13934 ). We found that both voltage and current improve, by as much as 100 mV and 3 mA cm-2, respectively. This is due to the much faster dye regeneration step by the TPAA, on a nanosecond timescale. Electron recombination to the oxidized dye is effectively prevented. We demonstrated that the function of dye regeneration and charge transport is effectively separated in the hybrid electrolyte: regeneration is done by TPAA, while Co(bpy)32+/3+ takes care of charge transport in the electrolyte. Finally, we could also demonstrate good stability of the devices.

I believe that this finding can lead to new records in dye-sensitized solar cell performance. Moreover, TPAA can in principle be added to any electrolyte system. TPAA is available from Dyenamo as product DN-X04.

Impressions from the AP-HOPV conference in Yokohama

09 February 2017 / Henrik Pettersson

For the first time, the HOPV conference was organized in Asia, more precisely at the harbor of Yokohama in Japan. It was a very positive experience and excellent facilities in a beautiful location. The timing of the conference was somewhat unfortunate since it collided with the Chinese New Year vacation period, which likely reduced the number of participants. The number of European participants was low, likely due to the upcoming HOPV conference in Lausanne in May this year.

The conference lectures were very perovskite-dominated. Things are still moving fast in the field. According to me, there was an increasing number of presented activities on modules and stability. However, I was actually hoping that there would be even more ones since this to me represents a technology maturity step. As in earlier DSSC development, the perovskite field also faces a situation where stable cell efficiencies and module efficiencies are significantly lower than champion devices. This is caused by modified chemistry and/or process methods. Regarding DSSC, I sense an upcoming activity trend after two years where the technology was "shaded" by the perovskite boom. As previously mentioned in the Dyenamo blog, we foresee increased activities on Cu-based DSSC electrolytes, both liquid and solid-state ones ("zombie" devices). This was supported by conference presentations and the high number of questions in relation to them.

Summarizing 2016 and looking forward

03 January 2017 / Henrik Pettersson

Once again, it is time to summarize a Dyenamo year. As last year, I wish to start by thanking all Dyenamo's customers and colleagues for an intense and successful 2016. The most representative Dyenamo word for 2016 is expansion; applicable for sales, number of customers, number of employees, size of R&D projects, number of products, batch sizes etc. This has all been realized without abandoning our model based on sustainable growth. Here are a few of my personal Dyenamo highlights from 2016:

  • we passed the threshold of having 100 material products
  • the Dyenamo team hosted an Indonesian scientific delegation for a tailor-made training in Stockholm
  • we have demonstrated that organic hole-conductors can be both highly efficient and affordable
  • the Dyenamo toolbox is being established as a standard characterization tool for DSSC research
  • our agreements with strategic partners in Asia
  • our patent-pending PEC holder opens new possibilities for photo-electrochemical research
Taking into account the latest results from research on perovskite and dye-sensitized solar cells, I am convinced that 2017 will be another thrilling year. New redox couples, such as Cu-based ones, have given the whole DSSC field a new boost. Moreover, the fact that stability has now been proven for perovskite solar cells automatically takes the technology to the next maturity level. It is with great pride I conclude that Dyenamo materials have been involved in both advancements. In 2017, I am confident that we will experience a significant increase of activities focusing on perovskite modules and alternative DSSC chemistry based on organic dyes in combination with new redox systems and hole-transport materials. Moreover, I can promise that Dyenamo will continue to be very active in offering the best materials for these (and other) activities.

Once again, many thanks for a great year. I am looking forward to hearing from you during 2017.

On the rapid development of hole-conductors

14 March 2016 / Henrik Pettersson

For a long period of time, spiro-OMeTAD has been the obvious choice of molecular hole-conductor for perovskite solar cells and solid-state DSSCs. This era may now have come to an end, since a large number of novel hole-conductors appear at an impressive rate. Many of these are used to obtain very high device efficiencies demonstrating that many different hole-conducting materials can be used to match the spiro efficiencies. Looking further down the road, the winning hole-conductors will be the ones that, in addition to high device-performance, are low in production cost and that provide highly stable devices. Dyenamo's choice of the first runner-up is the so-called X60 (DN-X02) hole-conductor, developed by our colleagues at KTH in Stockholm. This material has been implemented in top-efficiency perovskite devices (around 20%) by the groups of Profs. Anders Hagfeldt and Michael Grätzel at EPFL (DOI: 10.1039/C6EE00056H). In addition, the X60 material is attractive from a large-scale production point of view and can thus already from the start be offered at very competitive prices (DN-X02).

Summarizing 2015 and looking forward

02 February 2016 / Henrik Pettersson

I would like to thank all of Dyenamo's customers and colleagues for an intense and successful 2015. We have continued to develop the company according to our model based on the foundation of sustainable growth. During the year, we have expanded our production and development facilities and expanded the organization by several recruitments. In addition, we have been engaged in three significant R&D projects. We have followed our previous path by continuing to launch many new products for chemistry-based solar technologies, mainly solar fuels, perovskite solar cells and dye-sensitized solar cells. I am pleased with the increased interest for materials on demand, where we custom-synthesize material-components. Despite the fact that several orders have been very demanding, I am proud to conclude that we have without exception successfully delivered the ordered materials. The Dyenamo team is prepared and committed to continue to take on new challenges and carry on the same dy(e)namic path in 2016.

Dyenamo-materials and efficiency world-records

21 December 2015 / Henrik Pettersson

The authors of this blog share a great interest in sports and we often have discussions regarding similarities between solar cell research and team-based sports. Both share the challenge to make strong individuals to work as a team. In addition, solar cell research and sports share the same passion for world-records. Solar cell efficiency world-records attract attention, career possibilities and opens for funding, whereas sport-records attract fame and sponsor deals. From an industrialization point of view, solar world-records probably have a minor impact. However, for showing the potential of technologies, reaching out to the public and obtain interest from society, they are very important.

It is now three years ago that the Dyenamo web-site was created. Today more than 100 products for dye-sensitized solar cells, perovskite solar cells and solar fuels have been launched - a record in itself. More importantly, Dyenamo materials are currently used in world record devices for all three technologies.

    i) Dye-sensitized solar cells: Our organic dye LEG4 (D35cpdt, DN-F05) was used to obtain the reported efficiency values exceeding 14%, see K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, Chem. Commun., 2015, DOI: 10.1039/C5CC06759F. For the record efficiency, Co-phenanthroline complexes were used as redox mediator, see Dyenamo products DN-C07 and DN-C08.

    ii) Perovskite solar cells: Three weeks ago EPFL established a new world record efficiency for Perovskite Solar Cells, with a certified conversion efficiency of 21.02%. The efficiency was certified on December 1 at the laboratories of Newport Corporation in Bozeman, Montana. The new conversion efficiency eclipses the previous record of 20.1%. In their record cell EPFL used the Dyenamo Co-dopant DN-P04 (FK209).

    iii) Solar fuels: This is a more diversified research field and record efficiencies are not as well defined as in the solar cell community. Dyenamo specializes in molecular solar fuel components and devices. State-of-the art efficiencies are based on Ru-complex light absorbers and catalysts immobilized on mesoscopic TiO2 electrodes for oxygen evolution, and the P1 organic dye, Co-complex catalysts and NiO electrodes for hydrogen evolution. Such devices are for example described in J. Am. Chem. Soc., DOI: 10.1021/jacs.5b04856. All these components can be ordered from Dyenamo.

Behind each of these records lies a tremendous parameter-testing work by the device-manufacturers. Different materials are tested against each other in a massive optimization process. It has actually not been Dyenamo's ambition to provide world-record materials. However, it is a very rewarding fact to conclude that Dyenamo manages to launch the right materials and quality to be included in the record devices.

Technology endorsement from Bill Gates

8 December 2015 / Henrik Pettersson

Last week, Bill Gates released the document "Energy Innovation - Why we need it and how to get there". In this report, he focuses on solar energy and highlights the following three technologies as particularly interesting; i) Solar chemical, ii) Flow batteries and iii) Solar paint. Translating these terms into the Dyenamo vocabulary, Solar chemicals means Solar fuel and Solar paint means Dye-sensitized solar cells/Perovskite solar cells. The document is obviously very encouraging for everybody that has been involved in this technology development; scientists, companies, Universities, research institutes, funding agencies, investors etc. We should all be very honored by and proud of this endorsement. However, more importantly we should also be even more motivated to proceed on our path. Collectively, we can make a difference!

DSSC for low-power applications

16 September 2015 / Henrik Pettersson

One of the commercially most interesting aspects of the DSSC technology has always been the fact that it outperforms other technologies at fluorescent light, especially at light-intensities below 250 Lux. This is also a somewhat confusing part of the PV world since there is no established standard for measuring power output, i.e. different lamps and spectra are used by different producers and for different technologies. One should therefore always be aware of this when comparing values.

Personally, I made my first low-power DSSC device in 1994 when working for Professor Michael Grätzel at EPFL. The devices were made for fluorescent light and intensities between 50 and 250 Lux. By using a classical sandwich device construction, we obtained power densities that by far exceeded those from amorphous silicon devices. The transfer from hand-made to machine-made devices resulted in so-called monolithic one-substrate devices, also with performance advantage in relation to amorphous silicon devices. I considered DSSC on glass-substrates being technically mature for commercialization for low-power applications in 2003. However, it took several years before DSSC low-power commercialization took place. My personal opinion is that this was caused by the hard cost-competition from low-power amorphous silicon cells. Moreover, the improvement of battery technology was fast and electronic equipment got more complicated requiring more power. A few years later, however, commercialization of flexible low-power DSSC on plastic substrates was initiated by the company G24Power in Wales. A large-volume production line was built and products were, and still are, brought to market.

The world of internet-of-things opens for a massive amount of novel applications for solar devices powering sensors. For such applications, DSSC has an additional competing technology in GaAs devices. It is interesting to see how different companies on their web-sites claim to have the world-leading low-power solar technology. This is probably related to the previously-mentioned lack of standardization. No matter what technology and producer is world-leading, it is of major importance that the performance of low-power DSSC is significantly improved in order to remain a competitive low-power technology. In order to do this, it is time to exchange the traditional DSSC-chemistry consisting of Ru-dyes and iodide/triiodide-based electrolytes. Dyenamo has focused hard on developing the next chemistry generation for low-power DSSC. By using our organic dyes and cobalt-based electrolytes, we have reached power densities above 20 µW/cm2 at 250 Lux fluorescent light. This is, to my knowledge, a top-value for low-power PV technologies. At Dyenamo, we are confident that chemistry based upon one-electron redox mediators, such as cobalt, is the way to out-perform all other technologies at low-power conditions, and that further development in this direction will result in continuous performance-improvements.

A breakthrough for solid-state dye-sensitized solar cells

5 June 2015 / Gerrit Boschloo

Referee comments are often read in an emotional state between hope and despair. But in rare occasions one gets happily surprised as in reading the title of this blog as a comment from one of the referees to our work on Cu-complexes as a novel hole transporting material for solid-state dye-sensitized solar cells (ss-DSSC).

Ss-DSSCs have been developed for more than 20 years with a starting point of Tennakone and coworkers already in 1988 using CuSCN as an inorganic hole conductor. The most studied hole transporting material (HTM) is spiro-OMeTAD, first published by EPFL in 1998, with a top efficiency of about 7% for ss-DSSC. This organic compound is also the standard HTM for perovskite solar cells. It is, however, expensive. The current commercial price of high purity spiro-OMeTAD is for example over ten times that of gold. While increased demand would undoubtedly lower this cost dramatically in any large-scale commercial endeavor, it is likely to remain expensive due to the synthetic methods and high purity needed for photovoltaic applications. Moreover, the electronic properties of spiro-OMeTAD such as work function and hole mobility may be limiting for development of different light absorber materials and contacts.

In our work on alternative redox couples for liquid type DSSC we followed the promising works by Hattori and Peng Wang and their co-workers on Copper-phenanthroline complexes. With this redox system Wang's group published a top efficiency of about 7%. The post-doc Marina Freitag in our Uppsala-group could conclude that Cu-phenanthroline is indeed a very strong contender to the established redox systems for DSSC based on iodide/tri-iodide or cobalt complexes. But her and our co-workers' studies came also with a big surprise! Having left some of the liquid sandwich solar cells with a Cu-phenanthroline electrolyte for some months with an unsuccessful sealing, the solvent of the electrolyte had evaporated and the cells had dried out. For somewhat unclear reasons the cells were anyway tested and - lo and behold - the efficiencies of the dried cells were even higher compared to the initial liquid cells. Marina quickly coined the name "Zombie cells" for these dry and supposed-to-be dead cells. With the Dyenamo organic LEG4 dye we reached the highest power conversion efficiency up to date for organic ss-DSSC of more than 8% efficiency, which was compared to spiro-OMeTAD with efficiencies between 5 and 6%.

These materials give the availability of modifications to tune redox potentials and to optimize hole transport. We believe that these preliminary results open up new directions for integration of this new class of HTMs not only to ss-DSSCs or perovskite solar cells, but also in other areas of organic electronics, where the use of HTMs is essential. The initial results are now published in Energy & Environmental Science, 2015, DOI: 10.1039/C5EE01204J.

Listen to Andreas Hinsch

26 May 2015 / Henrik Pettersson

Over my years in the dye-sensitized solar cell (DSSC) field, I have in several projects had the oppurtunity to work together with Andreas Hinsch from Fraunhofer ISE. As he now enters the field of perovskite solar cells, I want to make you aware of why we should pay attention to his points of view.

Around 20 years ago, Andreas came up with the idea of encapsulating DSSC modules with so-called glass-frits. It did not receive that much attention since the field was focused on using polymeric encapsulation solutions. In 1997-1999, Andreas and myself collaborated in a project on DSSCs for indoor applications. We then received several remarks that this was not of commercial interest since amorphous silcon had already done what there was to do. After this, Andreas focused on see-through modules, i.e. using the esthetic advantages of DSSC. This work was somewhat questioned since the efficiencies were low. The ongoing industrialization of the DSSC technology involves the technology directions Andreas worked on, i.e. indoor DSSC devices and see-through esthetic devices sealed with glass-frits. We should thus all learn from the past and listen carefully when Andreas presents his vision on how to manufature perovskite modules.

Impressions from HOPV15 in Rome

18 May 2015 / Henrik Pettersson

Being at a conference in Rome is a cultural experience. When walking through the beautiful historical city centre on the way to the conference, it is hard to comprehend that I am on my way to a working day. I shared my time at the conference between the Dyenamo stand, the lectures and the poster sessions. The lectures were as expected dominated by work on Perovskite solar cells. It struck me and others that HOPV this year took a turn towards being more physics- than chemistry-oriented. The progress on the Perovskite cells is fast and impressive, now with efficiencies exceeding 20 %. Nevertheless, I would have liked to hear more on stability, module technology and upscaling. Hopefully, this will be on the menu next year at the HOPV16 in Swansea. In my opinion, the big news in the DSSC field were i) the impressive phasade demonstrator at the Expo 2015 in Milan shown by Michael Grätzel, ii) the nice module work from Aldo di Carlo and colleagues at Dyepower, and iii) the innovatove work on Cu-based hole conductors from Marina Freitag and colleagues at Uppsala University. The latter two were unfortunately hidden in the poster session but deserve much more attention. I also noticed a number of lectures on solar fuel, which is another field that Dyenamo is involved in.

The exhibition was slightly hidden and comprised nine exhibitors, less than last year at HOPV14 in Lausanne. For me, it was very stimulating to meet customers, colleagues, old and new friends. HOPV has always been a friendly place with a great atmosphere. I have enjoyed reading all the contributions to the Dyenamo letter-box. The winner will be announced within shortly. Thank you to all participants for helping us launching the right products.

I greatly appreciated all the endorsements for the Dyenamo business model based on the foundation of sustainable growth. By maintaining the company ownership, we can build a dy(e)namic company attractive to work with that offers cutting edge high-value materials and solutions to our customers.

Summarizing and looking forwards

2 January 2015 / Henrik Pettersson

I would like to thank all of Dyenamo's customers and colleagues for a stimulating and successful 2014. It has been an intense year; we have launched many new products, including analytical pieces of equipment, for solar fuels, perovskite solar cells and dye-sensitized solar cells. In addition, we have expanded our production facilities, expanded the organisation by recruitments, obtained the Ingemar Croon award and two significant R&D projects.

In parallel to this, it is fascinating to see the career development of the Dyenamo founders; Anders Hagfeldt becoming Professor at EPFL, Lars Kloo becoming Secretary General for Science and Engineering at the Swedish Research Council, Licheng Sun being awarded with the Arhenius medal and Gerrit Boschloo taking the overall responsibility for the DSSC/ Perovskite research at Uppsala University. I am pleased to conclude that they all remain very active and engaged in the Dyenamo development. Together with our coworkers, we are prepared to continue on the same successful Dyenamo path in 2015.

Advanced Solar Cell Characterization

7 February 2014 / Gerrit Boschloo

"Meten is weten" is a well-known Dutch phrase, meaning approximately "to measure is to know". During my research career, that started in the Netherlands before moving to Sweden, I have done a lot of measurements on dye-sensitized solar cells. But quite often these did not give me the answers I was looking for. The main question was: How does the dye-sensitized solar cell work in detail? I therefore set out to develop new measurement techniques, inspired by Galileo Galilei:

"Measure what can be measured and make measurable what cannot be measured." Galileo Galilei (1564-1642)

In our research team, we developed methods to follow the photoinjected electrons in the mesoporous TiO2 on their way to the substrate, or to the redox electrolyte when recombination occurs. We also found ways to see the spectrum of oxidized dye molecules and electrons in the mesoporous TiO2 electrode under solar illumination conditions. These methods gave us a lot of know-how, and I am sure that advanced measurement techniques are essential for better understanding of the DSSC and further development of DSSC materials.

Dyenamo now gives access to two advanced techniques developed in our solar cell research.
First, the Dyenamo toolbox for electron transport time / lifetime and charge extraction measurements. The toolbox measurements are very quick to perform and easy to analyze, so that more cells can be tested and significant trends can be found. Similar information can be found using electrochemical impedance spectroscopy (EIS), but EIS measurements are time consuming and data analysis is tedious.
Second, the Dyenamo photoinduced absorption (PIA) spectroscopy system. PIA is performed under conditions that are similar to solar illumination, using low intensity on/off excitation, rather than an intense laser pulses. At a fraction of the cost of a nanosecond-transient absorption spectrometer, the Dyenamo PIA system offers an easy way to assess the electron injection of dyes into TiO2, and the regeneration of these dyes by redox mediators.

On the long-term stability of Co-based electrolytes

18 November 2013 / Lars Kloo

Since the combination of a bulky, organic sensitizing dye and a one-electron, and cobalt-based, redox system in 2010 (Hagfeldt, Sun et al., JACS, 132, 2010, 16714), one route to higher conversion efficiencies has been highlighted (Grätzel et al., Science, 334, 2011, 629). However, the new strategy based on transition metal complexes is not without obstacles to overcome. Already from the start the long-term stability has been questioned for this type of systems, in particular focusing on the stability of the cobalt complexes. Going towards multidentate ligands has been one promising approach (Bach, Long et al., JACS, 134, 2012, 16646). Modifying the electrolyte solvent system is another (Kloo, Achari et al, PCCP, 15, 2013, 17419). By optimization of the electrolyte composition recent and soon-to-be-published studies look highly promising also for volatile, organic solvents, showing excellent stability over 1000 hours under 1 Sun light-soaking conditions at 60 degrees. Thus, to my opinion, one-electron systems have a bright future for high-performing DSSC devices. The future will tell if the cobalt-systems will prevail or if they will be replaced by alternatives.

Organic versus metal-complex DSC dyes

22 October 2013 / Henrik Pettersson

I would like to share some of my thoughts regarding organic DSC dyes. A few years ago, I admit having considered them interesting from a fundamental rather than an applied point of view. Clearly, they were attractive from a feedstock and an upscaling perspective. However, I did not think that they would challenge the conventional Ru-dyes such as N719, C101, and C106. This has turned out to be a huge mis-judgement.
The turning point was when my co-workers at Uppsala university and KTH showed that organic dyes efficiently block recombination for one-electron redox mediators opening for high efficiencies. This finding was quickly picked up by EPFL leading to new DSC efficiency records. However, this was just the beginning. Thereafter, it has been shown by us and others that organic dyes, especially our own D35 (DN-F04) can lead to exceptionally stable DSC devices in combination with iodide/triiodide ionic liquid electrolytes, also at high temperatures. In addition, the possibility to make well-performing dyes in different colors make them even more attractive.
To sum up, I now believe that organic DSC dyes are here to stay. Dyenamo is working hard to deliver the best possible ones, today and in the future.

Welcome to the Dyenamo blog!

7 October 2013 / Henrik Pettersson

I am thrilled to write the first lines in the Dyenamo blog. The Dyenamo team has had the idea to initiate a blog for a while and now it is happening. We will use this medium to share the experiences and updates of the Dyenamo co-founders, i.e. Gerrit Boschloo, Anders Hagfeldt, Lars Kloo, Henrik Pettersson and Licheng Sun. The discussion topics will be interesting novelties in the DSC and solar fuel field, comments regarding publications, trends, conferences etc. We will continuously publish a new blog-post, which collectively should give a broad perspective on dye-sensitized solar cells and solar fuels.

It is now many years since I started to work on DSCs. I have spent one year at Ekologisk Energi AB, four years at EPFL, 15 years at Swerea IVF AB and two with Dyenamo. Over the years, I have seen DSC materials and scientists come and go. However, some of us remain like my Dyenamo-colleagues Anders Hagfeldt and Gerrit Boschloo, the N3 and the N719 dyes, the Pt counter electrodes, the FTO glass, the, MPN-based electrolytes. It is a privilege to have followed the DSC technology from childhood towards industrialization. Clearly, the latter is challenging for all of us. To my opinion, it is in the interest of all DSC scientists that the ongoing efforts to commercialize DSC modules are successful. Dyenamo is our contribution to support this; a team of experienced DSC people offering our services and materials.

I wish you all welcome to the Dyenamo blog and hope that you will find it to be interesting and stimulating reading.



Dyenamo AB
Teknikringen 38A
SE-114 28 Stockholm

+46 (0)10 173 00 10

© 2012 - 2024 Dyenamo AB